Errata and remarks on *Fundamentals of Convex Analysis*

Yuxi Liu*

February 20, 2019

This is a list of errors and remarks on *Fundamentals of Convex Analysis* (1st edition, 2004) by Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal.

1 Errors

Page 8, line 13-14: "we write $A \succ 0$ [resp. $A \succeq 0$]" **Page 14:** The characterization of outer/inner semi-continuity is inaccurate. Let's label possible properties of F at x^* thus:

- (1) Outer semi-continuous.
- (2) For all $\epsilon > 0$, there is a neighborhood $N(x^*)$ such that $x \in N(x^*)$ implies $F(x) \subset F(x^*) + B(0, \epsilon)$
- (3) Inner semi-continuous.
- (4) For all $\epsilon > 0$, there is a neighborhood $N(x^*)$ such that $x \in N(x^*)$ implies $F(x^*) \subset F(x) + B(0, \epsilon)$

then the implications are actually:

- (1) \implies (2) when F is locally bounded at x^* .
- (2) \implies (1) when $F(x^*)$ is closed.
- (3) \implies (4) when $F(x^*)$ is bounded.
- (4) \implies (3) always.

^{*}while a student in Australian National University

Page 48, line 2: " $y \in C$ whenever $2y_x - y \in C$."

Page 69, Fig. 5.3.1.: the label on the far right should be $\{x\} + N_C(x) =$ $P_{C}^{-1}(x)$

Page 71, line 1: ξ^n should be ξ^m .

Page 96, line -3: last \mathbb{R}^m should be \mathbb{R}^n

Page 97, line 7: "the epigraphical hull of the image A'(epi q)"

Page 117, Problem 2: Needs additional assumption that q is monotonically increasing.

Page 120, Problem 18: Let

$$A = \begin{bmatrix} 10 & 0\\ 0 & 1 \end{bmatrix}, x = \begin{bmatrix} 0.2\\ 0.8 \end{bmatrix} y = \begin{bmatrix} 0.8\\ 0.2 \end{bmatrix}$$
(1)

then $f(\frac{1}{2}(x+y)) = 0.75625 > \frac{1}{2}(f(x) + f(y)) = 0.66976$

Page 133, Theorem 1.3.5 (iii): Add condition " σ is positive homogeneous"

Page 150, line -12: $P = \{(\xi, \eta) : \frac{1}{4}\xi^2 \le 1 - \eta\}$ Page 161, Problem 6: Change η^2 to ξ^2

Page 161, Problem 8: This question is wrong. Counterexample: let *H* be the x-axis in \mathbb{R}^2 , and S be the area above a gaussian curve $y = e^{-x^2}$. Then $\overline{co}S \cap H = H, \overline{co}(S \cap H) = \emptyset$

Page 197, line -6: "where $U(x) := \{u \in U : g(x, u) = f(x)\}$ "

Page 206, Problem 5: It's wrong. I have no idea how to fix it.

Page 206, Problem 6: "Show that $\nabla^2 f$ "

- Page 213: Just above Example 1.1.5, " $\frac{1}{2||u||^2} ||s||^2$ "
- Page 225, line -8: "this is Proposition C.2.1.3"

Page 238, end of Theorem 4.1.1: "(Remark D.6.2.6)"

Page 242, Problem 1 (v), line 8: "equality holds if"

Page 243, Problem 9: This problem is wrong. Counterexample: n = $1, f = i_{[0,\infty)}, K = [0,\infty), \text{ then }$

$$\inf_{x \in K} f(x) = 0, \min_{s \in K^{\circ}} f^*(s) = -\infty$$

$\mathbf{2}$ Remarks

Page 19: This page is blank in the paper book and left out in the electronic book.

Page 48, line -3: This definition of L is trivial, since we can take two $y_1, y_2 \in \text{bd } C, y_1 \neq y_2$, and take two sequences $x_{k1} \rightarrow y_1, x_{k2} \rightarrow y_2$ from outside C, then $L \to 1$, thus L is always equal to 1 when the boundary of C is not a singleton.

Page 58, line -7: Lemma 4.3.1 is equivalent to Theorem 4.3.3, and does not have to await the proof of Theorem 4.3.4.

Page 174, Remark 2.1.2: In fact, the Lipschitz property of $f'(x, \cdot)$ is not needed:

$$\epsilon < \limsup_{k \to \infty} \left| \frac{f(x+h_k) - f(x)}{t_k} - f'(x,d) \right|$$

$$\leq \limsup_{k \to \infty} \left| \frac{f(x+h_k) - f(x+dt_k)}{t_k} \right| + \left| \frac{f(x+dt_k) - f(x)}{t_k} - f'(x,d) \right|$$
(2)

For the first term, use Lipschitz to get it $\leq \frac{L}{t_k} \left| \frac{h_k}{t_k} - d \right| \to 0$. For the second term, it converges to 0 by definition of f'(x, d).

Page 206, Problem D.6: All the proofs of the theorem in the literature require complex analysis.

Page 206, Problems D.10, D.11: Very easy, should have 0 stars.