Errata and remarks on Fundamentals of Convex Analysis

Yuxi Liu*

February 20, 2019

This is a list of errors and remarks on Fundamentals of Convex Analysis (1st edition, 2004) by Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal.

1 Errors

Page 8, line 13-14: "we write $A \succ 0$ [resp. $A \succeq 0$]"
Page 14: The characterization of outer/inner semi-continuity is inaccurate.
Let's label possible properties of F at x^{*} thus:
(1) Outer semi-continuous.
(2) For all $\epsilon>0$, there is a neighborhood $N\left(x^{*}\right)$ such that $x \in N\left(x^{*}\right)$ implies $F(x) \subset F\left(x^{*}\right)+B(0, \epsilon)$
(3) Inner semi-continuous.
(4) For all $\epsilon>0$, there is a neighborhood $N\left(x^{*}\right)$ such that $x \in N\left(x^{*}\right)$ implies $F\left(x^{*}\right) \subset F(x)+B(0, \epsilon)$
then the implications are actually:

- $(1) \Longrightarrow(2)$ when F is locally bounded at x^{*}.
- $(2) \Longrightarrow(1)$ when $F\left(x^{*}\right)$ is closed.
- $(3) \Longrightarrow(4)$ when $F\left(x^{*}\right)$ is bounded.
- $(4) \Longrightarrow$ (3) always.

[^0]Page 48, line 2: " $y \in C$ whenever $2 y_{x}-y \in C$."
Page 69, Fig. 5.3.1.: the label on the far right should be $\{x\}+N_{C}(x)=$ $P_{C}^{-1}(x)$
Page 71, line 1: ξ^{n} should be ξ^{m}.
Page 96, line -3: last \mathbb{R}^{m} should be \mathbb{R}^{n}
Page 97, line 7: "the epigraphical hull of the image $A^{\prime}($ epi $g)$ "
Page 117, Problem 2: Needs additional assumption that g is monotonically increasing.
Page 120, Problem 18: Let

$$
A=\left[\begin{array}{cc}
10 & 0 \tag{1}\\
0 & 1
\end{array}\right], x=\left[\begin{array}{l}
0.2 \\
0.8
\end{array}\right] y=\left[\begin{array}{l}
0.8 \\
0.2
\end{array}\right]
$$

then $f\left(\frac{1}{2}(x+y)\right)=0.75625>\frac{1}{2}(f(x)+f(y))=0.66976$
Page 133, Theorem 1.3.5 (iii): Add condition " σ is positive homogeneous"
Page 150, line -12: $P=\left\{(\xi, \eta): \frac{1}{4} \xi^{2} \leq 1-\eta\right\}$
Page 161, Problem 6: Change η^{2} to ξ^{2}
Page 161, Problem 8: This question is wrong. Counterexample: let H be the x-axis in \mathbb{R}^{2}, and S be the area above a gaussian curve $y=e^{-x^{2}}$. Then $\overline{c o} S \cap H=H, \overline{c o}(S \cap H)=\emptyset$
Page 197, line -6: "where $U(x):=\{u \in U: g(x, u)=f(x)\}$ "
Page 206, Problem 5: It's wrong. I have no idea how to fix it.
Page 206, Problem 6: "Show that $\nabla^{2} f$ "
Page 213: Just above Example 1.1.5, " $\frac{1}{2\|u\|^{2}}\|s\|^{2} "$
Page 225, line -8: "this is Proposition C.2.1.3"
Page 238, end of Theorem 4.1.1: "(Remark D.6.2.6)"
Page 242, Problem 1 (v), line 8: "equality holds if"
Page 243, Problem 9: This problem is wrong. Counterexample: $n=$ $1, f=i_{[0, \infty)}, K=[0, \infty)$, then

$$
\inf _{x \in K} f(x)=0, \min _{s \in K^{\circ}} f^{*}(s)=-\infty
$$

2 Remarks

Page 19: This page is blank in the paper book and left out in the electronic book.
Page 48, line -3: This definition of L is trivial, since we can take two $y_{1}, y_{2} \in \operatorname{bd} C, y_{1} \neq y_{2}$, and take two sequences $x_{k 1} \rightarrow y_{1}, x_{k 2} \rightarrow y_{2}$ from outside C, then $L \rightarrow 1$, thus L is always equal to 1 when the boundary of C is not a singleton.

Page 58, line -7: Lemma 4.3.1 is equivalent to Theorem 4.3.3, and does not have to await the proof of Theorem 4.3.4.
Page 174, Remark 2.1.2: In fact, the Lipschitz property of $f^{\prime}(x, \cdot)$ is not needed:

$$
\begin{align*}
\epsilon & <\limsup _{k \rightarrow \infty}\left|\frac{f\left(x+h_{k}\right)-f(x)}{t_{k}}-f^{\prime}(x, d)\right| \\
& \leq \limsup _{k \rightarrow \infty}\left|\frac{f\left(x+h_{k}\right)-f\left(x+d t_{k}\right)}{t_{k}}\right|+\left|\frac{f\left(x+d t_{k}\right)-f(x)}{t_{k}}-f^{\prime}(x, d)\right| \tag{2}
\end{align*}
$$

For the first term, use Lipschitz to get it $\leq \frac{L}{t_{k}}\left|\frac{h_{k}}{t_{k}}-d\right| \rightarrow 0$. For the second term, it converges to 0 by definition of $f^{\prime}(x, d)$.
Page 206, Problem D.6: All the proofs of the theorem in the literature require complex analysis.
Page 206, Problems D.10, D.11: Very easy, should have 0 stars.

[^0]: *while a student in Australian National University

